MPO Staff Overview

TAC Meeting

May 3rd, 2017
FDOT Complete Streets Timeline

- **2014**: FDOT Policy Established
- **2015**: FDOT Creates Plan
- **2018**: FDOT will finalize CS Handbook & Design Guidance
Handbook

Chapters

1. Partnership and Agency Collaboration
2. Context-Based Complete Streets
3. Process for Implementing Complete Streets
4. Design Considerations for Complete Streets

WHAT IS IN THIS HANDBOOK?

This handbook provides:

- An explanation of FDOT's Complete Streets approach and principles for state roads
- Guidelines for FDOT's collaboration with local and regional partners
- Definitions of context classifications used for state roads
- Guidelines for applying a Complete Streets approach to state projects
- Guidelines for roadway design considerations
C1-Natural
Lands preserved in a natural or wilderness condition, including lands unsuitable for settlement due to natural conditions.

C2-Rural
Sparsely settled lands may include agricultural land, grassland, woodland, and wetlands.

C2T-Rural Town
Small concentrations of developed areas immediately surrounded by rural and natural areas; includes many historic towns.

C3R-Suburban Residential
Mostly residential uses within large blocks and a disconnected or sparse roadway network.

C3C-Suburban Commercial
Mix of uses set within small blocks with a well-connected roadway network. May extend long distances. The roadway network usually connects to residential neighborhoods immediately along the corridor or behind the uses fronting the roadway.

C4-Urban General
Mix of uses set within small blocks with a well-connected roadway network. Typically concentrated around a few blocks and identified as part of a civic or economic center of a community, town, or city.

C5-Urban Center
Mix of uses set within small blocks with a well-connected roadway network. Typically built up to the roadway, and are within a well-connected roadway network.

C6-Urban Core
Areas with the highest densities and building heights, and within FDOT classified Large Urbanized Areas (population >1,000,000). Many are regional centers and destinations. Buildings have mixed uses, are built up to the roadway, and are within a well-connected roadway network.
Sections to consider:

- **212**: Intersection transitions
- **213**: Interchanges (Currently under development)
- **214**: Turnouts and Driveways (Currently under development)
- **222.2.3.2**: Midblock Intersection provisions
- **222.4.1**: Bridge Pedestrian Railings and Fences
Table 210.2.1 – Minimum Travel and Auxiliary Lane Widths

<table>
<thead>
<tr>
<th>Context Classification</th>
<th>Travel (feet)</th>
<th>Auxiliary (feet)</th>
<th>Two-Way Left Turn (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Design Speed (mph)</td>
<td>Design Speed (mph)</td>
<td>Design Speed (mph)</td>
</tr>
<tr>
<td></td>
<td>25-35</td>
<td>40-45</td>
<td>≥ 50</td>
</tr>
<tr>
<td>C1 Natural</td>
<td>11</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>C2 Rural</td>
<td>11</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>C2T Rural Town</td>
<td>11</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>C3 Suburban</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>C4 Urban General</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>C5 Urban Center</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>C6 Urban Core</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

Travel Lanes:
1. Minimum 11-foot travel lanes on designated freight corridors and SIS facilities with design speed 25-35 mph (regardless of context). However, if truck volume is XX trucks per hour per lane, provide a minimum 12-foot travel lane.
2. Minimum 12-foot travel lanes on all undivided 2-lane, 2-way roadways (regardless of context and speed). However, 11-foot lanes may be used on 2-lane, 2-way curbed roadways that have adjacent bicycle lanes.
3. 10-foot travel lanes are typically provided on very low speed roadways, but should consider wider lanes when transit is present or greater than XX trucks per hour per lane.
4. Travel lanes should not exceed 14 feet in width.

Auxiliary Lanes:
1. Auxiliary lanes are typically the same width as the adjacent travel lane.
2. Table values for right turn lanes may be reduced by 1 foot when a bicycle keyhole is present.
3. Median turn lanes should not exceed 15 feet in width.
4. For RRR Projects, 9-foot right turn lanes on very low speed roadways are allowed.

Two-way Left Turn Lanes:
1. Two-way left turn lanes are typically one foot wider than the adjacent travel lanes.
2. For RRR Projects, the values in the table may be reduced by 1 foot.

Table 222.1.1 – Sidewalk Widths

<table>
<thead>
<tr>
<th>Context Classification</th>
<th>Sidewalk Width (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 Natural</td>
<td>5</td>
</tr>
<tr>
<td>C2 Rural</td>
<td>5</td>
</tr>
<tr>
<td>C2T Rural Town</td>
<td>6</td>
</tr>
<tr>
<td>C3 Suburban</td>
<td>8</td>
</tr>
<tr>
<td>C4 Urban General</td>
<td>6</td>
</tr>
<tr>
<td>C5 Urban Center</td>
<td>10</td>
</tr>
<tr>
<td>C6 Urban Core</td>
<td>12</td>
</tr>
</tbody>
</table>

Notes:
1. For C2T and C3, sidewalk width may be increased up to 8 feet when the demand is demonstrated.
2. For C5 and C6, when standard sidewalk width cannot be attained, provide the greatest attainable width possible, but not less than 6 feet.
3. For RRR projects, sidewalk width 4 feet or greater may be retained within any context classification.
SUBMIT COMMENTS BY MAY 26TH, 2017

CONTACTS:

FDOT Design Manual:
Paul Hiers, P.E.
Roadway Design Criteria Administrator
Phone 850-414-4324
paul.hiers@dot.state.fl.us

Mary Jane Hayden, P.E.
Roadway Design Engineer
Phone 850-414-4783
maryjane.hayden@dot.state.fl.us

Complete Streets Handbook:
DeWayne Carver, AICP
State Complete Streets Program Manager
Phone 850-414-4322
dewayne.carver@dot.state.fl.us